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Introduction
In almost all mathematical treatments of vector calculus an assumption is 
made that the basis set is orthogonal in nature.  In general this may not 
always be the most convenient way to work a problem.  This paper 
addresses the topic of performing vector analysis for any coordinate system 
without prior orthogonalization .  In these papers Einstein's summation 
convention as well as covariant & contravariant notation will not be used. 
Moreover the metric for a given geometry will be expressed in terms of 
scale factors.

(1)

In this manner the general Pythagorean theorem would have the form
ds2=∑

 ,
h

2 ⋅dx⋅dx                                    (2)

For example the scale factors for the cylindrical polar coordinates (r,θ,z) 
would be (1,r,1) and the Pythagorean theorem would have the form.

ds2=dr2r⋅d 2dz 2                                (3)

The dot product

Usually the dot product between to vectors A and B is expressed as
(4)

However this assumes an orthogonal basis, in which like basis vectors 
multiply to yield 1 and unlike basis vectors multiply to 0.  In this case all 
cross terms drop out.  But what if one has an oblique, or non-orthogonal, 
basis?  To answer this question, consider the vector defined below

(5)

Using the shorthand notation that hα is the same as hαα.  The dot product of 
this vector with itself (assuming an orthogonal basis) is

(6)
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A⋅B=∑


A⋅B

ds=∑


h⋅dx⋅x

ds2=∑


h
2⋅dx

2=∑


g⋅dx
2

h
2 ≡g 



Which is of course is the invariant infinitesimal distance or interval in space 
ds2.  With an oblique basis we want the same meaning, but now we need the 
general equation

(7)

As a proposed generalization of (4), assume that the general dot product has 
the form

(8)

Mαβ is to be determined.  Doing the dot product of ds with itself ala (8) 
produces

(9)

Making this equal the distance squared ds2 in (2) means Mαβ must be 

(10)

The general dot product therefore is 

(11)

It will be observed that in the case of a completely orthogonal basis this 
reverts back to (4).

Vector calculus
Having expanded the dot product to cover oblique coordinate systems, the 
next task is to apply the results to vector calculus.  For reasons to be 
discussed later we will use the symbol  to denote a more generalized del 
operator.

General gradient
Since a dot product is not involved in gradients, the gradient for a non-
orthogonal space will then be the same as for any curvilinear space.

(12)
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ds2=∑
 , 

g dx dx=∑
 , 

h
2 dx dx

A⋅B=∑
 , 

M ⋅A B

ds2=∑
 , 

M  h hdx dx

A⋅B=∑
 , 

h
2

h h
⋅A B

□=∑


x

h
⋅∂

M =
h

2

h h



Where the ∂α signifies the partial derivative with respect to xα .

General divergence
The divergence in an orthogonal 3-D curvilinear coordinate system can be 
expressed as follows1

(13)

With Π the product of all hα.  This can also be expressed as the dot product 
between the vector v and a del operator with components

(14)

Expanding the dot product to allow for non-orthogonal coordinate systems 
using the above gives

(15)

Laplacian
The Laplacian is defined as the divergence of the gradient of some function 
φ.  

(16)

Or after simplifying,

(17)

Generalizing to N space
Expanding (12), (15) and (17) into any N-space is trivial.  All that is needed 
is to expand the summation over additional coordinates.  The reason for the 
choice of symbol for del can be seen by applying this to the case of the 
Minkowski space where the Lorentz transformation holds.  In this space let 
the coordinates be (x,y,z,t) and h = (1,1,1,ic).  Applying the generalized 
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∇ j
op≡

1
⋅∂ j


h j

□⋅v=∑
 ,

h
2

h h
⋅∂

 v
h



□2=∑
 , 

h
2

 h h
⋅∂[


h
⋅□]

□2=∑
 , 

h
2

hh
⋅∂


h h

⋅∂

∇⋅v= 1
∑

j
∂ j 

⋅v j

h j




definition of the Laplacian gives

(18)

Which is the d' Alembertian operator for Cartesian coordinates2 operating 
on φ.  However the Laplacian above has been derived for any N dimensional 
geometry.
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□L
2=∂x

2∂ y
2∂z

2−
1
c2 ∂t

2


	Vector calculus in an oblique basis set
	Introduction
	In almost all mathematical treatments of vector calculus an assumption is made that the basis set is orthogonal in nature.  In general this may not always be the most convenient way to work a problem.  This paper addresses the topic of performing vector analysis for any coordinate system without prior orthogonalization .  In these papers Einstein's summation convention as well as covariant & contravariant notation will not be used. Moreover the metric for a given geometry will be expressed in terms of scale factors.
	The dot product
	General gradient
	General divergence
	Laplacian


