In Exercises 1–4, determine whether \(f(x) \) approaches \(\infty \) or \(-\infty \) as \(x \) approaches \(-2\) from the left and from the right.

1. \(f(x) = \frac{1}{(x + 2)^2} \)
2. \(f(x) = \frac{1}{x + 2} \)

\[y \]

\[-3 \quad -2 \quad -1 \quad 0 \quad 1 \]

\[-1 \quad 0 \quad 1 \]

3. \(f(x) = \tan \frac{\pi x}{4} \)
4. \(f(x) = \sec \frac{\pi x}{4} \)

\[y \]

\[-6 \quad -3 \quad 0 \quad 3 \quad 6 \]

\[-3 \quad 0 \quad 3 \]

In Exercises 5–8, determine whether \(f(x) \) approaches \(\infty \) or \(-\infty \) as \(x \) approaches \(-3\) from the left and from the right.

5. \(f(x) = \frac{1}{x^2 - 9} \)
6. \(f(x) = \frac{x}{x^2 - 9} \)
7. \(f(x) = \frac{x}{x^2 - 9} \)
8. \(f(x) = \sec \frac{\pi x}{6} \)

In Exercises 9–24, find the vertical asymptotes (if any) of the function.

9. \(f(x) = \frac{1}{x^2} \)
10. \(f(x) = \frac{2}{x - 3} \)
11. \(f(x) = \frac{x^2 - 2}{x^2 - x - 2} \)
12. \(f(x) = \frac{2 + x}{1 - x} \)
13. \(f(x) = \frac{x^3}{x^2 - 1} \)
14. \(f(x) = \ln(3 + x) \)
15. \(f(x) = \frac{1}{e^x - 1} \)
16. \(f(x) = \frac{-2}{(x - 2)^2} \)
17. \(f(x) = \frac{x}{x^2 + x - 2} \)
18. \(f(x) = \frac{1}{(x + 3)^4} \)
19. \(f(x) = \tan 2x \)
20. \(f(x) = \sec \pi x \)
21. \(f(x) = \frac{x^3 + 1}{x + 1} \)
22. \(f(x) = \frac{x^2 - 4}{x^3 + 2x^2 + x + 2} \)
23. \(f(x) = \frac{x}{\sin x} \)
24. \(f(x) = \frac{\tan x}{x} \)

In Exercises 25–28, determine whether the function has a vertical asymptote or a removable discontinuity at \(x = -1 \).

25. \(f(x) = \frac{x^2 - 1}{x + 1} \)
26. \(f(x) = \frac{x^2 - 6x - 7}{x + 1} \)

27. \(f(x) = \frac{x^2 + 1}{x + 1} \)
28. \(f(x) = \frac{\sin(x + 1)}{x + 1} \)

In Exercises 29–42, find the limit.

29. \(\lim_{x \to -2} \frac{x - 3}{x^2 - 2} \)
30. \(\lim_{x \to 1} \frac{2 + x}{1 - x} \)
31. \(\lim_{x \to 1} \frac{x^2}{x^2 - 16} \)
32. \(\lim_{x \to 1/2} \frac{x^2}{4x^2 + 16} \)
33. \(\lim_{x \to 3} \frac{x^2 + 2x - 3}{x^2 + x - 6} \)
34. \(\lim_{x \to -3} \frac{6x^2 + x - 1}{x^2 + 4x - 4x - 3} \)
35. \(\lim_{x \to 0} \left(1 + \frac{1}{x} \right) \)
36. \(\lim_{x \to 0} \left(x^2 - \frac{1}{x} \right) \)
37. \(\lim_{x \to 0} \frac{2}{\sin x} \)
38. \(\lim_{x \to 0} \frac{-2}{\sin \left(\frac{x}{2} \right)} \)
39. \(\lim_{x \to 0} \frac{x^2 - x}{x^2 + 1(x - 1)} \)
40. \(\lim_{x \to 0} \frac{x - 2}{x^2} \)
41. \(\lim_{x \to -3} \ln |\cos x| \)
42. \(\lim_{x \to 0^+} e^{-0.5x} \sin x \)

In Exercises 43 and 44, use a graphing utility to graph the function and determine the one-sided limit.

43. \(f(x) = \frac{1}{x^2 - 25} \)
44. \(f(x) = \frac{1}{x^2} \)

45. Suppose that \(Q \) varies inversely as the square root of \(t - 4 \). Find the limit of \(Q \) as \(t \to 4^+ \).

46. **Boyle's Law** For a quantity of gas at a constant temperature, the pressure \(P \) is inversely proportional to its volume \(V \). Find the limit of \(P \) as \(V \to 0^+ \).

47. **Moving Ladder** A 25-foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of \(r = \frac{2x}{\sqrt{625 - x^2}} \) ft/sec.

Let \(x \) be the distance the base of the ladder is from the house.

a. Find the rate when \(x \) is 7 feet.
b. Find the rate when \(x \) is 15 feet.
c. Find the limit of \(r \) as \(x \to 25^- \).

Figure for 47
33. Nonremovable discontinuity at \(x = 0 \)
35. Removable discontinuity at \(x = 1 \);
 Nonremovable discontinuity at \(x = -2 \)
37. Nonremovable discontinuity at \(x = -2 \)
39. Continuous for all real \(x \)
41. Nonremovable discontinuity at \(x = 2 \)
43. Continuous for all real \(x \)
45. Nonremovable discontinuities at integer multiples of \(\frac{\pi}{2} \)
47. Nonremovable discontinuities at each integer
49. \(a = 2 \)
51. \(a = 4 \)
53. Continuous for all real \(x \)
55. Nonremovable discontinuities at \(x = 1 \) and \(x = -1 \)
57. Continuous on \((-\infty, \infty)\)
59. Continuous on \(\ldots, (-2\pi, 0), (0, 2\pi), (2\pi, 4\pi), \ldots \)
61. Nonremovable discontinuity at each integer.

63. Discontinuous at \(x = 3 \)

65.

It is not obvious from the graph that the function is discontinuous at \(x = 0 \).

67.

69. \(f(x) \) is continuous on \([2, 4]\).
 \(f(2) = -1 \) and \(f(4) = 3 \)
 By the Intermediate Value Theorem, \(f(c) = 0 \) for at least one value \(c \) between 2 and 4.

71. 0.68
73. \(f(3) = 11 \)
75. \(f(2) = 4 \)
77. Discontinuous at every positive integer

79. Discontinuous at every even positive integer

83. True
84. True
85. False, the rational function \(f(x) = p(x)/q(x) \) has at most \(n \) discontinuities where \(n \) is the degree of \(q(x) \).
86. False, it is discontinuous at \(x = 1 \).
87. Discontinuous at \(x = \pm 1, \pm 2, \pm 3, \ldots \)
93. a. Domain: \((-\infty, 0), (0, \infty)\)
b.

c. \(\lim_{x \to 0} f(x) = 4, \quad \lim_{x \to -\infty} f(x) = 0 \)
d. \(4/x \) approaches \(-\infty \) as \(x \to 0^- \) which implies that \(2^{4/x} \) approaches 0. \(4/x \) approaches \(\infty \) as \(x \to 0^+ \) which implies that \(2^{4/x} \) approaches \(\infty \).

Section 1.6 (page 111)
1. \(\lim_{x \to 2^+} \frac{1}{(x + 2)^2} = \infty \)
3. \(\lim_{x \to -\infty} \tan \frac{\pi x}{4} = -\infty \)
\[\lim_{x \to -\infty} \frac{1}{(x + 2)^2} = \infty \]
\[\lim_{x \to \infty} \frac{\pi x}{4} = \infty \]
5. \(\lim_{x \to -3} \frac{1}{x^2 - 9} = \infty \)
7. \(\lim_{x \to -3} \frac{x^2}{x^2 - 9} = \infty \)
\[\lim_{x \to -3} \frac{1}{x^2 - 9} = \infty \]
\[\lim_{x \to \infty} \frac{x^2}{x^2 - 9} = \infty \]
9. \(x = 0 \)
11. \(x = 2, x = -1 \)
13. \(x = \pm 1 \)
15. \(x = 0 \)
17. \(x = -2, x = 1 \)
19. \(x = \frac{\pi}{4} + \frac{n\pi}{2}, n \) an integer
21. No vertical asymptote
23. \(x = n\pi, n \) a nonzero integer
25. Removable discontinuity at \(x = -1 \)
27. Vertical asymptote at \(x = -1 \)
29. \(-\infty \)
31. \(\infty \)
33. \(\frac{1}{x} \)
35. \(-\infty \)
37. \(-\infty \)
39. \(-\infty \)
41. \(-\infty \)
43. \(-\infty \)
45. \(\infty \) if the constant of proportionality \(k \) is positive and \(-\infty \) if \(k \) is negative.